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Abstract
Relative Raman scattering intensities are obtained in three samples of vitreous silica of
increasing density. The variation of the intensity upon densification is very different for bending
and stretching modes. For the former we find a Raman coupling-to-light coefficient CB ∝ ω2.
A comparative intensity and frequency dependence of the Raman spectral lines in the three
glasses is performed. Provided the Raman spectra are normalized by CB , there exists a simple
relation between the Si–O–Si bond angle and the frequency of all O-bending motions, including
those of fourfold (n = 4) and threefold (n = 3) rings. For 20% densification we find a reduction
of ∼5.7◦ of the maximum of the network angle distribution, a value in very close agreement
with previous NMR experiments. The threefold and fourfold rings are weakly perturbed by the
densification, with a bond angle reduction of ∼0.5◦ for the former.

1. Introduction

There exists two different ways to describe the structure of
vitreous silica (v-SiO2). The first one considers well-defined
SiO4 tetrahedra connected to each others by oxygen atoms.
Within this picture, it is the large angular spread of the oxygen
‘kneecap’ bonds between adjacent tetrahedra that creates the
disorder at larger length scales [1, 2]. The second conventional
structural description of silica considers a random network
of loose Si–O–Si bonds [3]. At larger scale, the elementary
structural units (i.e. the SiO4 tetrahedra or the Si–O–Si bonds)
form non-planar (Si–O–Si)n rings with a large n distribution.
These define the medium range order of v-SiO2. Numerical
simulations have shown that the most probable ring size is
for n = 6 [4]. This relatively open structure leads to a
free volume fraction greater in silica than in other network
glasses, such as GeO2 [5]. It is the reason why v-SiO2 can
densify up to ∼20% without significant coordination change
of the Si atoms, nor deformation of the SiO4 tetrahedra [6, 7].
Upon compression the ring structure puckers and the elastic-
to-plastic limit probably occurs for pressures that produce new
bondings in the glass. When the pressure is released from
above this limit, the high pressure structure is partially retained.
Up to 20% densification, the permanently densified silicas

(d-SiO2) are mostly characterized by a smaller Si–O–Si angle
and a probable redistribution of some oxygen bonds. These
structural modifications translate into the Raman spectra by
frequency shifts and line broadenings (or narrowings) of the
vibrational bands. For example, the frequency increase of the
R, D1 and D2 spectral lines upon densification is attributed to
the reduction of the Si–O–Si angle [3]. All of these Raman
vibrations involve oxygen-atom displacements along the Si–
O–Si bisector in the plane of the structural unit (the so-called
below O-bending vibrations). The latter sometimes defines
the bending axis in the numerical simulations. D1 and D2 are
called ‘breathing modes’, as they correspond to in-phase O-
bending motion in fourfold (n = 4) and threefold (n = 3)
rings, respectively [8], without significant displacement of the
Si atoms [9, 10]. The vibrations leading to the R-band involve
a weak contribution from the two adjacent silicon atoms of the
Si–O–Si bond, in addition to the O-bending one [11]. These
modes are probably closer to pure bendings.

Although many investigations performed in d-SiO2 report
on structural modifications shown by Raman scattering, very
few of these have been related to quantitative estimates. In
addition, the measurement of the relative intensities from
a set of glasses is usually not easily accessible and has
only been little exploited [12]. However, such experimental
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characterizations are of interest in particular because the local
and medium range structure of d-SiO2 likely depends on the
densification cycle, and numerical simulation results should
thus be considered cautiously. Combining time-resolved
and standard Raman scattering, we recently accessed the
concentration of small rings in d-SiO2. For 20% densification,
we found an increase by a factor of ∼4 of the threefold
rings while it is only ∼1.5 for the fourfold ones [5]. In
the present report, we will show that the Raman coupling
coefficient of the O-bending vibrations qualitatively agrees
with the prediction of simulations [13]. Combining these
results with the simple nearest-neighbor central-force model
description developed earlier [3], it is possible to quantitatively
estimate the Si–O–Si bond angle in the network and in the
small rings. The laboratory-scale analysis developed below
could become a standard characterization method of densified
glasses (mechanically or neutron irradiated), hydrated silicas
and silica-based glasses of industrial or geological interest.
The two densified silica samples of density ρ = 2.43
and 2.63 g cm−3, and the normal silica glass, with ρ =
2.21 g cm−3 are described in [5] together with the experimental
Raman set-up. We only recall here that special attention
was paid during the densification process in order to reduce
the glass-density fluctuations at micrometer scales. A value
�ρ/ρ � 1% was measured by high resolution Brillouin
scattering experiments in the two densified glasses. In addition,
the utmost care was taken to measure the relative Raman
intensities between the three glasses. A crossed analysis of
our data with those obtained using femtosecond impulsive-
stimulated Raman scattering supports the reliability of our
intensity measurements [5].

2. Normalized Raman intensities

In a first-order Stokes Raman process, an incident photon of
frequency ωI scatters a photon of frequency ωS after interaction
with a vibrational excitation σ of frequency ωσ = ωS − ωI

in the media. For molecular vibrations, the Raman scattering
cross section of a probed volume VS is given by [14]

I RS(ωσ ) = h̄ωIω
3
SVS

2c4ωσ

Cσ [n(ωσ ) + 1]gσ (ω), (1)

where n(ωσ ) is the Bose occupation factor, c is the speed of
light, gσ (ω) is the response function of the mode σnormalized
to one and Cσ is the Raman coupling-to-light coefficient
related to the derivative of the polarizability tensor ασ of
the mode of normal coordinate Q, Cσ ∝ (∂ασ /∂ Q)2. The
fluctuation–dissipation theorem relates the power spectrum
to the imaginary—or dissipative—part of the susceptibility,
χ ′′(ωσ ), which is simply the Raman spectrum IRS divided by
the Bose factor. Considering the same incoming energy h̄ωI

and scattering volume VS, it is worthwhile to normalize χ ′′
with respect to the glass density ρ and the scattered energy:

χ ′′
N(ωσ ) = 1

ρ

1

ω3
S

I RS(ωσ )

[n(ωσ ) + 1] . (2)

Figure 1. (a) Normalized Raman reduced VV spectra in silicas.
‘——’ ρ = 2.21 g cm−3 (blue), ‘- - - -’ ρ = 2.43 g cm−3 (green)
and ‘· · · · · ·’ ρ = 2.63 g cm−3 (red). The inset shows the density of
states gB(ω) of the Raman-active O-bending vibrations. (b) Areas of
the R-, ω1-, ω2-and ω3-spectral lines in d-SiO2 relative to that in
v-SiO2, C rel = A(ρ)/A(2.21): ‘◦’ ρ = 2.43 g cm−3 (green) and
‘•’ ρ = 2.63 g cm−3 (red). It is the Raman coupling coefficient of
the Si–O–Si bending modes which is the most affected by the
densification. Inset: frequency dependence of the Raman coupling
coefficient of the O-bending modes, CB(ω).

(This figure is in colour only in the electronic version)

Combining equations (1) and (2), the quantity to be conserved
in the Raman spectra of a mode σ is thus

I RS
N (ωσ ) = ωσ χ ′′

N(ωσ ) ∝ Cσ gσ (ω). (3)

In glasses, the description of the vibrations by normal
modes failed owing to the structural disorder, and the
Raman response of a given mode σ rather results in
an inhomogeneously broadened line. Hence, one usually
transforms ωσ into ω in (1) and (3), and the response function
gσ (ω) into a Raman vibrational density of states of the mode
σ [15]. In this case I RS

N identifies with the so-called reduced
Raman spectra defined, for example, in [16], normalized by
the glass density.

The normalized parallel-polarized (VV) Raman spectra of
our three silica samples, I RS

N = ωχ ′′
N(ω), are reproduced in

figure 1(a). This presentation completely masks the boson
peak at low frequency [17, 18]. The signal is dominated by
the R-band whose maximum in I RS is at ∼437 cm−1 in v-
SiO2. This broad structure is surrounded by the relatively
weak D1 and D2 narrow lines. The frequency of each of these
three components increases with increasing density, while
the reverse applies for the high frequency doublet (ω2, ω3)
centered around 1100 cm−1. This opposite behavior originates
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from the different nature of the modes: bending type for the
former and stretching type for the latter [3].

On the basis of these experimental data, it would be
interesting to examine how Cσ and gσ behave, depending on
the nature of the vibration. Let us consider first the threefold
and fourfold ring modes D2 and D1, associated with the
breathing of the oxygen atoms [8]. It has been stated in [7]
that the Raman coupling coefficient C of these bands changes
upon densification, in particular owing to the puckering of the
rings. The small rings being very rigid, this effect should
be, however, weaker in these structures than for the network
bending modes. We found in [5] that 20% densification leads
to about 26% extra intensity for the R-band. This cannot
account for the corresponding ∼150% and ∼400% intensity
increase for the D1 and D2 lines, respectively, and shows that
this strong intensity variation is not related to a change in the
coupling factor C . There are also very few of these structures:
about 1 threefold ring out of 670 SiO2 units and 1 fourfold
ring out of 550 SiO2 units in v-SiO2 [13]. Therefore, they can
be considered as incoherent scatterers. Owing to the above
two arguments, it is reasonable to assume that the Raman
vibrational density of states of the small rings is proportional
to their number Nσ (σ = D1 and D2) in the glass, that is∫
σ

gσ (ω) dω ∝ Nσ . Following equation (3), the area Aσ of
the D1 and D2 lines thus relates to the number of scatterers:

Aσ (ρ) =
∫

σ

I RS
N (ω) dω ∝ Nσ (ρ). (4)

The relatively small increase of the n = 4 rings up to ρ =
2.63 cm−1 (∼1.5) suggests that the overlap of the R-band with
D1 upon densification mostly relates to a change of the Si–O–
Si network angle, whose value tends to that of the n = 4 rings
in our most densified sample, rather than to a strong increase
of the number of these rings.

The Raman intensity of the network modes (R, ω1, ω2

and ω3) behaves differently. The number of these vibrations
remains constant upon densification, if one neglects the
formation of new fifth- and sixth-coordinated Si atoms [19, 7],
which indeed have never been experimentally observed, at least
for 20% densification. Therefore, the total density of state
for the modes σ = R, ω1, ω2 and ω3 should be constant in
our three glasses. However, the total integrated intensity in
figure 1(a),

∫ 1400
0 I RS

N (ω) dω, increases by ∼1.17 and ∼1.24 for
10% and 20% densification, respectively. One also observes
that this increase mainly concerns the bending modes, and in
particular the R-band. This effect can be explained by a change
in Cσ . Indeed, considering the contribution from O and Si
atoms separately, numerical simulations have shown that the
VV-polarized Raman spectra of the R-band (as well as for the
D1 and D2 lines) arise almost exclusively from coupling to
O-motions. For those O-bending vibrations, the intensity is
related to the inter-tetrahedra Si–O–Si angle by [13]

Cσ = α cos2(θσ /2), (5)

where θσ is the Si–O–Si angle in the mode σ and α relates
to the Raman susceptibility. Coupling factors in v-SiO2, in α-
quartz and in a set of cristobalite structures calculated by first

principles can be described with the same value of α [13, 20],
emphasizing that α also remains the same in our densified
samples. It is thus reasonable to assume that, for all but the
D1 and D2 lines (and the boson peak), the variation of the
Raman normalized area reflects changes in the coupling-to-
light coefficient through

Aσ (ρ) =
∫

σ

I RS
N (ω) dω ∝ Cσ (ρ). (6)

Combining (5) and (6) it is in principle possible to extract
the average Si–O–Si network angle in our densified samples
provided one has a reference angle, such as, for example, that
in v-SiO2. In the literature, the value of the average Si–O–Si
angle in v-SiO2, θ0, can vary from ∼140◦ to ∼155◦, depending
on the experiment or on the simulation. We will consider in
the calculations below θ0 = 144◦ obtained in a computed glass
from which the Si–O–Si angles in the n = 4 and 3 rings
have also been estimated [13]. These are smaller than in the
network, θ0,D1 ∼ 136◦ and θ0,D2 ∼ 129◦, respectively.

We will show in the following that the intensity
measurement provides information on the symmetry of the
vibrations in silica glasses. Combining Raman intensity and
frequency dependence of the bending modes in d-SiO2, it is
also possible to access the Raman coupling coefficient of the
O-bending modes and the Si–O–Si angle in the network as well
as in the small rings.

3. Discussion

Figure 1(b) shows the relative area, Arel
σ (ρ)=Aσ (ρ)/Aσ (2.21),

for each of the network Raman bands and the two d-SiO2 sam-
ples. This quantity directly relates to a change in the cou-
pling coefficient C rel

σ (ρ) of the mode σ (equation (6)) relative
to that of v-SiO2. The background underneath the three high
frequency bands (ω1, ω2, ω3) has been subtracted before calcu-
lation. It is this background subtraction which gives the main
contribution to the corresponding error bars in figure 1(b). For
the high frequency doublet, the areas Aω2 and Aω3 result from
a fit with two Gaussians, while Aω1 is obtained by integration
of the background-corrected RS data over the ω1 line. For the
R-band, the integration runs between 100 and 700 cm−1. Here,
the contribution from the D2 line has been subtracted by the
procedure described in [5], but not the one from D1 underneath
the R-band. However, D1 contributes at most to ∼2% of the
signal and, as mentioned above, its intensity does not change
much upon densification.

The coupling coefficient of the R-band, CR(ρ), is clearly
the most affected by the compaction. In contrast, the one
of ω2 and ω3 is lower than—or at least close to—one. The
R-band corresponds mainly to bending (B) vibrations and,
according to (5), its coupling coefficient should increase in d-
SiO2 owing to the decrease of the average Si–O–Si angle. This
is well reproduced by the experiment. The high frequency
doublet (ω2, ω3) rather involves a stretch (S) of the Si–O
bonds [21]. It is likely that the coupling coefficient for these
modes does not change much with the glass density because
the tetrahedra are weakly affected by the compaction. In
between, ω1 is associated with mixed bending and stretching
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motions [21] (B+S) and its coupling coefficient thus exhibits
an intermediate behavior. Therefore, the trend of Cσ with
density qualitatively reflects the bending or stretching nature
of the modes. It is likely that such a behavior generalizes
to elastically compressed (e.g. in a diamond anvil cell) silica
glasses, but also to other network glasses such as GeO2, GeS2,
GeSe2 and B2O3.

Let us discuss now the frequency dependence of the
bending modes. Using a nearest-neighbor central-force model,
Sen and Thorpe [3] have proposed earlier the relation ω =√

β/m cos θ/2, where β is a restoring force constant and m an
effective mass for the vibrating structures. The latter simply
corresponds to the oxygen mass in an Si–O–Si motion where
the Si atoms are fixed. To go further in our analysis we first
need to make two approximations. The first one is to consider
that β is constant whatever the glass density. This is probably
a more reasonable approximation for the small rings (D1 and
D2) than for the larger structures (R-band), because the denser
the structure the weaker the effect on compaction. The second
approximation assumes that the Sen and Thorpe expression
above remains valid for the breathing of small rings, although
these vibrations involve a slight stretching of the Si–O bond
and are thus not pure bending motions. However, we will
further demonstrate that the Raman analysis of the Si–O–Si
angles in rings is in very good agreement with the computed
literature data, suggesting that the above two assumptions are
reasonable. Assuming β is constant, one thus has

cos θ/2 = cos θ0/2

ω0
ω, (7)

where ω0 and θ0 is a reference set of data. Taking ω0 =
ωR = 437 cm−1 at the maximum of the R-band in I RS, one
has cos θ/2 = 7.071 × 10−4ω. We applied this formula in v-
SiO2 at frequencies corresponding to D1 and D2, ω = ωD1 =
495 cm−1 [5] and ω = ωD2 = 605 cm−1, to see whether
this relation could remain valid for the breathing modes of
small rings. Surprisingly we find θD1 = 139.0◦ and θD2 =
129.3◦, which compares rather well with θ0,D1 ∼ 136◦ and
θ0,D2 ∼ 128◦ proposed by the simulations [13]. It is worth
noting here that θ0, θ0,D1 and θ0,D2 have been obtained from
the same model glass. θ0 being the reference value in our
calculations, this prevents us from large uncertainties when
comparing experiment and simulation data.

The departure between experiment and calculation could
eventually be explained by the nature of the breathing modes
D1 and D2 which are not pure bending vibrations as they
involve a slight stretching of the Si–O bonds. However, the
dominant effect probably arises from the Raman coupling
factor of the O-bending modes, CB(ω), which shifts the peak
maximum in the Raman spectra. Combining (5) and (7) one
finds CB(ω) ∝ ω2. The quantity I RS

N /CB(ω) presented in
the inset of figure 1(a) thus corresponds to the Raman density
of state gB(ω) (equation (3)) of the bending modes. The
experimental value for the area of gB(ω) is constant in our
three glasses with an accuracy better than 5%, emphasizing
the self-consistency of our approach. The normalization of the
Raman spectra by CB (ω) decreases by about 3 the signal at
high frequency (the inset of figure 1(b)), in particular in the

Figure 2. Si–O–Si bond angle reduction in the network (R) and in
the small rings (D1 and D2). For the highly dissymmetric R-band it is
useful to consider both the shift of the maximum of the distribution
(•) and that of the center of gravity (◦) of the distribution.

frequency region of D1 and D2. Such a presentation gives a
more appropriate view of the weight of these modes relative to
the R-band and likely explains the difficulty of observing the
breathing modes of small rings in the full vibrational density of
states measured by neutron scattering [22]. At low frequency,
gB(ω) artificially increases owing to the proximity of the boson
peak, whose weight is magnified by the normalization by
CB(ω). In v-SiO2, the maximum of the R-band in a gB(ω)

plot is now ωR = ω0 = 422 cm−1 and equation (7) becomes
cos θ/2 = 7.323 × 10−4ω. Table 1 summarizes the values of
θσ and �θσ extracted from this refined formula.

ωσ is the frequency at the peak maximum for the R-
(network), D1- (n = 4 rings) and D2-band (n = 3 rings).
Therefore, θR corresponds to the angle at the maximum of
the distribution that is, the most probable network angle. It
likely corresponds to the average angle in the structures with
n � 6, which are the most probable ones [4]. In v-SiO2 the
Si–O–Si angle in the n = 4 and 3 rings obtained from our
Raman-spectra analysis, 137.9◦ and 127.6◦ respectively, are
now very close to the calculated ones (∼136◦ and ∼128◦).
This shows that (7) gives a reasonable estimate of the Si–O–
Si angle for all the O-bending vibrations, including those in
small rings. Therefore, for frequencies between ∼200 and
∼700 cm−1 it is possible to draw an x axis showing the angles
rather than the frequency (inset of figure 1(a)). For frequencies
below ∼200 cm−1, one cannot exclude the scattering from
more collective motions.

�θσ = θσ (ρ) − θσ (2.21) is the variation of θσ (σ = R,
D1, D2) in the two densified glasses, relative to v-SiO2. The
glass-density dependence of �θσ is presented in figure 2.
The reduction of the most probable network angle seems
to saturate at high densities. One finds �θR = −5.7◦
for 20% densification. Using magic angle spinning nuclear
magnetic resonance (MAS-NMR) on the 29Si nucleus, Devine
et al [23] found a variation of ∼−5◦ for a 16%-densified
sample compacted at 50 kbar and 600 ◦C. A linear glass-
density dependence would lead to a shift of −6.2◦, a value in
very good agreement with our result, considering that such a
linear extrapolation gives a slightly overestimated value (see
figure 2). The effect of compaction on the Si–O–Si bond angle
decreases in the denser structures. For 20% densification it
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Table 1. Si–O–Si angles in our three silicas, θR, θD1 and θD2 , calculated from their Raman spectra. The related frequencies ωR, ωD1 and ωD2

correspond to the peak maxima in a gB(ω) plot. The values in parentheses, obtained from the raw Raman spectra (I RS) are given for
comparison. �θ is the angle in d-SiO2 relative to that in v-SiO2 (see text). For the dissymmetric R-band one distinguishes two quantities: the
shift of the peak maximum, �θR, and the shift of the center of gravity of the distribution, �θG

R . δθR is the full width at half-maximum of the
distribution. Frequencies are in cm−1.

Network (R) n = 4 rings (D1) n = 3 rings (D2)

Density ρ (g cm−3) ωR θR �θR �θG
R δθR ωD1 θD1 �θD1 ωD2 θD2 �θD2

2.21 422 144a — — 32 490 137.9 — 603 127.6 —
(437) (495)b (605)

2.43 465 140.2 −3.8 −6 20 498 137.2 −0.7 606 127.3 −0.3
(468) (506)b (609)

2.63 486 138.3 −5.7 −10.5 16 505 136.6 −1.3 608.5 127.1 −0.5
(493) (515)b (614)

a From computer simulation [13].
b From ISRS measurements [5].

goes from �θ = −5.7◦ in structures with n � 6, to −1.3◦
in the fourfold rings (n = 4) and −0.5◦ in the threefold ones
(n = 3). These numbers confirm that the small rings are only
weakly affected by the densification.

It is also useful to estimate the shift of the center of gravity
of the network angle distribution in the densified glasses, as it
is sometime done in the simulations. This requires us to define
the frequency at the center of gravity of the R-band in (7):

ωG =
∫

ωgB(ω) dω
∫

gB(ω) dω
. (8)

The dissymmetry of the R-band associated with the signal
arising from the boson peak at low frequency complicates the
calculation of ωG. In order to minimize the relative errors, the
integration is done between ωR − �/2 and ωR + �/2, where
� is the full width at half-maximum of the distribution. One
calculates ωG

R(2.21) � 357 cm−1, ωG
R(2.43) � 413 cm−1

and ωG
R (2.63) � 463 cm−1. This corresponds to an angle

reduction �θG
R = −6◦ ± 1.5◦ and �θG

R = −10.5◦ ± 1.5◦
for 10% and 20% densification, respectively. The large error
bars for the angle variation account for the choice of the
integration limits in (8). Though the value for the glass with
highest density compares rather well to that obtained from
recent numerical simulations �θG ∼ −8◦ [24]. It is also
about twice the value found above for the shift of the maximum
of the distribution (−5.7◦), a difference which can easily be
understood by a faster decrease of the volume fraction of the
open structures (large angles, low frequencies) in the first step
of the densification.

Looking to the shape of gB(ω) one also notices the large
spread of the Si–O–Si angles. In v-SiO2 one can tentatively
estimate a full width at half-maximum δθ � 32◦. The angular
spread decreases in the densified samples. One has δθ � 20◦
for ρ = 2.43 g cm−3 and δθ � 16◦ for ρ = 2.63 g cm−3. The
stiff decrease of gB(ω) at high frequency certainly arises from
a close-packing-type effect of the SiO4 tetrahedra which limits
the angular spread at low angles. This could also explain the
saturation of δθ when increasing the glass density.

Finally it is important to notice that the local structure of
the densified silicas can change depending on the densification
process. This is clearly observed when comparing glasses

compacted by shockwave and by hydrostatic pressure at high
temperature [25]. Computed densified silicas in [7, 24]
have been obtained by an instantaneous reduction of the
sample volume at room temperature, followed by a relaxation
(between 2 and ∼8 ps, depending on the model glass) of the
structure. This densification process is also very different from
that employed to obtain our samples. This points out that a
comparison of the fine structure of d-SiO2 glasses obtained
with a different pressure–temperature cycle should be taken
very cautiously.

4. Conclusion

Intensity and frequency analysis of the Raman spectral lines
of permanently densified vitreous silicas have been performed.
The Raman coupling coefficient C is sensitive to the bending
or stretching character of the modes. For the O-bending
vibrations, one has CB(ω) ∝ ω2. The frequency dependence
of these modes, including those in small rings, can reasonably
be described by a single law which only takes into account the
Si–O–Si angle, provided the Raman spectra are normalized
by CB . This suggests that for Raman modes between 200
and 700 cm−1 typically, the frequency of the vibrations is
determined by one single Si–O–Si structural unit, whatever the
number of these structures vibrating with a phase relationship.
For 20% densification we find a reduction of ∼1.3◦ and ∼0.5◦
in the fourfold and threefold rings, respectively. These values
are very small, confirming that the small rings only weakly
pucker upon compression. This also supports [5] that the
normalized Raman intensity of the D1 and D2 spectral lines
is proportional to the number of rings. In our most densified
sample, the maximum of the network bond angle distribution
shifts by ∼5.7◦ while it is rather ∼10.5◦ if one considers
the center of gravity of the distribution. The former value is
very close to that extrapolated from previous NMR studies in
a sample densified with a similar pressure–temperature cycle
than ours. As both the Si–O–Si bond angle distribution and
the small ring statistics likely depend on the densification
cycle, this simple Raman-spectra analysis could become part
of the routine characterization of the local and medium
range structure of permanently densified silicas, elastically
compressed glasses [26] and nanoindented surfaces [27]. To
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some extent it could also be applied to other silica-based
glasses.
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